
DOI: 10.1007/s00224-006-1338-3

Theory Comput. Systems (2007) Theory of
Computing

Systems
© 2007 Springer Science+Business Media, Inc.

Optimal Semicomputable Approximations
to Reachable and Invariant Sets

Pieter Collins∗

Centrum voor Wiskunde en Informatica,
Postbus 94079, 1090 GB Amsterdam, The Netherlands
Pieter.Collins@cwi.nl

Abstract. In this paper we consider the computation of reachable, viable and in-
variant sets for discrete-time systems. We use the framework of type-two effectivity,
in which computations are performed by Turing machines with infinite input and
output tapes, with the representations of computable topology. We see that the reach-
able set is lower-semicomputable, and the viability and invariance kernels are upper-
semicomputable. We then define an upper-semicomputable over-approximation to
the reachable set, and lower-semicomputable under-approximations to the viability
and invariance kernels, and show that these approximations are optimal.

1. Introduction

The computation of reachable, viable and invariant sets are important problems in nonlin-
ear systems theory. For safety-critical applications, it is important to be able to compute
these sets accurately, taking care to control the error bounds. However, the results of [6]
show that the reachable set is lower-semicomputable, but not upper-semicomputable,
which means that it is impossible to compute arbitrary accurate upper bounds to the
reachable set. Instead, it is possible to upper-semicompute the chain-reachable set, which
over-approximates the reachable set. These results were extended to viability and invari-
ance kernels in [7], which were shown to be upper-semicomputable, but to have robust
under-approximations which are lower-semicomputable.

We consider computability in the framework of type-two effectivity developed by
Weihrauch [23] and co-workers. In this theory, computations are performed by stan-

∗ This research has been supported by the Netherlands Organisation for Scientific Research (NWO) Vidi
Grant 639.032.408.

P. Collins

dard Turing machines with input, output and work tapes. Unlike standard computability
theory (type-one effectivity) in which inputs and outputs are words (elements of �∗),
type-two machines can compute on sequences (elements of �ω). This allows represen-
tations of, and computations on, the standard objects of analysis and topology, such
as real numbers, open, closed and compact sets, continuous functions and semicontin-
uous multivalued functions. Computable topology provides a standard representation
for elements of a topological space, which allows the extraction of approximations by
denotable elements with various error bounds. The main result of the theory is that only
functions and operators which are continuous with respect to the underlying topology
are computable in the standard representation. For this paper, we study semicomputable
operators, which are continuous with respect to lower or upper topologies, and hence
are called semicontinuous.

The purpose of this paper is to consider the approximations to the reachable set
and the viability and invariance kernels, and show that they provide the optimal possible
computable approximations. More precisely, the main results are to show that the chain-
reachable set the optimal upper-semicomputable over-approximation to the reachable
set, and that the viability and invariance kernels are the optimal lower-semicomputable
under-approximations to the viability and invariance kernels. These results have major
implications for tool developers; any tool which computes an over-approximation to the
reachable set of a nonlinear system can do no better than approximate the chain-reachable
set, and any tool which computes an under-approximation to the viability or invariance
kernels can do no better than the robust viability and invariance kernels.

We remark that the negative computability results presented here assume that the only
information we have about sets and systems are lower and upper approximations. If more
detailed information is available (e.g. an algebraic description in terms of polynomials
with rational coefficients) then it may be possible to determine these sets exactly, even if
they differ. In other words, a lack of computability in the approximative sense used here
does not imply a lack of computability in some other computational framework. How-
ever, a lack of computability in the approximative sense does indicate that the problem is
non-robust, so results obtained using exact methods may not be physically meaningful.
The framework of computable analysis can deal with arbitrary (semi)continuous sys-
tems, whereas algebraic methods can handle systems which are not semicontinuous, but
severely restricts the class of continuous systems which can considered.

There is a large body of literature on approximation methods in viability theory such
as that by Aubin and Frankowska [4] and Cardaliaguet et al. [5]. Approximation methods
based on ellipsoidal techniques have been considered by Kurzhanski and Varaiya [17],
[18]. A number of applications of set-valued methods to control problems are given
by Szolnoki [22]. The relation between reachability and chain reachability has been
considered by Asarin and Bouajjani [1]. Optimal controllers have been computed by
Junge and Osinga [15] using the tool GAIO. An alternative approximation framework
based on first-order logic over the reals is given by Fränzle [10], [11].

There are already many tools which compute approximations to the reachable set,
such as d/dt [2], CheckMate [21] and HyTech [13] for linear hybrid systems, and
HyperTech [14] and PHAVer [12] for over-approximation of reachable sets. Computation
of reachable sets can also be performed by the general-purpose package GAIO [9] for
set-based computations.

Optimal Semicomputable Approximations to Reachable and Invariant Sets

The paper is organised as follows. In Section 2 we review some material on sets and
multivalued functions, and show how to construct semicontinuous functions lying in an
open set. In Section 3 we review the elements of computable topology we use. The main
results are contained in Section 4. We give some conclusions and directions for future
research in Section 5.

2. Topologies on Sets and Semicontinuous Maps

We now introduce some basic topology of locally compact Hausdorff spaces, which can
be found in [19], and of hyperspaces of open, closed and compact sets.

2.1. Open, Closed and Compact Sets

We let X be a locally compact, second countable Hausdorff space with topology τ . Let
O, A and K denote the open, closed and compact subsets of X , respectively.

The space of closed and compact sets can be topologised using the hit-and-miss
topologies of Fell and Vietoris. An open set in the lower topology on A consists of all
sets which “hit” a given open subset of X , and hence can be seen as giving “positive”
information about its elements. An open set in the upper topology on A or K consists
of all sets which “miss” a given compact or closed subset of X , and hence can be seen
as giving “negative” information about its elements.

Definition 2.1.

1. The lower topology τO< , generated by sets of the form {U ∈ O | C ⊂ U } for
C ∈ K.

2. The lower topology τA< , generated by sets of the form {A ∈ A | A ∩ J �= ∅} for
J ∈ O.

3. The upper Fell topology τA> , generated by sets of the form {A ∈ A | A∩ B = ∅}
for B ∈ K.

4. The upper Vietoris topology τK> , generated by sets of the form {C ∈ K | C∩B =
∅} for B ∈ A.

The Fell topology τA on A(X) is generated by τA< and τA> , and the Vietoris topology
on K is generated by the restriction of τA< and τK> .

If β is a base for the topology on X , we can construct countable bases for τO< , τA< ,
τA> and τK> as follows:

βO< := {{U ∈ O | Īj ⊂ U, i = 1, . . . , k} | I1, . . . , Ik ∈ β},
βA< := {{A ∈ A | A ∩ Ji �= 0, i = 1, . . . , k} | J1, . . . , Jk ∈ β},
βA> := {{A ∈ A | A ∩ Īj = ∅, i = 1, . . . , k} | I1, . . . , Ik ∈ β},
βK> := {{C ∈ K | C ⊂ J1 ∪ · · · ∪ Jk} | J1, . . . , Jk ∈ β}.

(1)

We henceforth use the convention that A, B represent closed sets, C represents a
compact set, U, V represent open sets and I, J, K represent basic open sets.

P. Collins

2.2. Semicontinuous and Continuous Multivalued Functions

The results of this paper hold for semicontinuous functions on locally compact Hausdorff
spaces.

We typically specify a multivalued map F : X ⇒ Y by a giving a single-valued map
X → P(Y). The action of F on sets is then given by F(A) := {y ∈ Y : ∃ x ∈ A, y ∈
F(x)} for A ∈ PX . If F : X ⇒ Y and G: Y ⇒ Z , the composition of F and G is
G ◦ F : X ⇒ Z given by G ◦ F (x) := G(F(x)) = {z ∈ Z : ∃ y ∈ Y, y ∈ F(x) and z ∈
G(y)}. If F,G: X ⇒ Y , we write F ⊂ G if F(x) ⊂ G(x) for all x .

There are two natural set-valued preimages of F : X ⇒ Y : the weak preimage
F−1(B) = {x ∈ X : F(x)∩B �= ∅} and the strong preimage, F⇐(B) = {x ∈ X : F(x) ⊂
B}.We say F is lower-semicontinuous if F−1(U) is open whenever U is open, or equiv-
alently, if F⇐(A) is closed whenever A is closed. F is upper-semicontinuous if F−1(A)
is closed whenever A is closed, or equivalently, if F⇐(U) is open whenever U is open. A
function F is weakly upper-semicontinuous if F−1(C) is closed whenever C is compact.
A multivalued function is (weakly) continuous if it is both lower-semicontinuous and
(weakly) upper-semicontinuous.

We say a function has closed values if F(x) is closed for all x , denoted F : X →
A(Y), and compact values if F(x) is compact for all x , denoted F : X → K(Y).

It is easy to see that a closed-valued function F : X ⇒ Y is lower-semicontinuous
if, and only if, it is (τ X ; τA(Y)<)-continuous, and a compact-valued function F : X ⇒ Y
is upper-semicontinuous if, and only if, it is (τ X ; τK(Y)>)-continuous. However, the set of
(τ X ; τA(Y)>)-continuous functions consists of only weakly upper-semicontinuous closed-
valued functions.

We define LSCO(X ⇒ Y) to be the set of lower-semicontinuous open-valued
functions, LSCA(X ⇒ Y) to be the set of lower-semicontinuous closed-valued func-
tions, USCA(X ⇒ Y) to be the set of weakly upper-semicontinuous closed-valued
functions, and USCK(X ⇒ Y) to be the set of upper-semicontinuous compact-valued
functions. We denote closed-valued weakly continuous functions by CA and compact-
valued continuous functions by CK.

The topologies τMO< , τMA< , τMA> and τMK> on LSCO(X ⇒ Y), LSCA(X ⇒
Y), USCA(X ⇒ Y) and USCK(X ⇒ Y) are respectively generated by the open
sets

σMO< := {{F ∈ LSCO | ∀x ∈ Ī , y ∈ J̄ , y ∈ F(x)} | I ∈ βX , J ∈ βY },
σMA< := {{F ∈ LSCA | Ī ⊂ F−1(J)} | I ∈ βX , J ∈ βY },
σMA> := {{F ∈ USCA | Ī ∩ F−1(J̄) = ∅} | I ∈ βX , J ∈ βY },
σMK> := {{F ∈ USCK | Ī ⊂ F⇐(J1 ∪ · · · ∪ Jk)} | I ∈ βX , J1, . . . , Jk ∈ βY }.

(2)

For more information on multivalued functions, see [16].

2.3. Semicontinuity and Limits

Given a set-valued function F : X ⇒ P(Y) where X is a topological space, we can
consider the functions formed by taking limits as x ′ → x . Since P(Y) is a lattice, we

Optimal Semicomputable Approximations to Reachable and Invariant Sets

can define the following operators:

lim inf F (x) :=
⋃
U�x

⋂
x ′∈U

F(x ′) = {y ∈ Y | ∃U � x, ∀x ′ ∈ U, y ∈ F(x ′)},
lim sup F (x) :=

⋂
U�x

⋃
x ′∈U

F(x ′) = {y ∈ Y | ∀U � x, ∃x ′ ∈ U, y ∈ F(x ′)}, (3)

where U ranges over open subsets of X . Note that the above definition is purely set-
theoretic in Y . If Y is a topological space, we can additionally define versions of lim sup
and lim inf which take open or closed values.

Definition 2.2. Let X and Y be topological spaces, and F : X → P(Y). Define the
topological-theoretic limits:

lim infOF (x) := {y ∈ Y | ∃V � y, ∃U � x, ∀x ′ ∈ U, V ⊂ F(x ′)},
lim infOF (x) := {y ∈ Y | ∀V � y, ∃U � x, ∀x ′ ∈ U, F(x ′) ∩ V �= ∅},
lim supAF (x) := {y ∈ Y | ∀V � y, ∀U � x, ∃x ′ ∈ U, F(x ′) ∩ V �= ∅},

(4)

where U ranges over open subsets of X , and V over open subsets of Y .

It is fairly straightforward to show that

lim infOF (x) :=
⋃
U�x

int

(⋂
x ′∈U

F(x ′)

)
,

lim supAF (x) :=
⋂
U�x

cl

(⋃
x ′∈U

F(x ′)

)
.

(5)

The following result summarises the properties of lim infO, lim infA and lim supA

which we need.

Theorem 2.3.

1. If F : X ⇒ Y , then lim infOF ∈ LSCO, lim infOF ⊂ F and F ∈ LSCO ⇐⇒
F = lim infOF . Further, if F ⊂ G, then lim infOF ⊂ lim infOG.

2. If F : X ⇒ Y , then lim infA is closed-valued. If F is closed-valued, then
lim infAF ⊂ F and F ∈ LSCA ⇐⇒ F = lim infAF . Further, if F ⊂ G, then
lim infAF ⊂ lim infAG.

3. If F : X ⇒ Y , then lim supAF ∈ USCA, F ⊂ lim supAF ⊂ F and F ∈
USCA ⇐⇒ F = lim supAF . Further, if F ⊂ G, then lim supAF ⊂
lim supAG.

The following example shows that lim infAF need not be lower-semicontinuous.

Example 2.4. Let F :R ⇒ R be defined by F(x) = {x} if x ∈ Q and F(x) = {0}
otherwise. Then lim infAF(0) = {0} and lim infAF(x) = ∅ if x �= 0, so the function
lim infA f is not lower-semicontinuous.

P. Collins

We can use Theorem 2.3 to find optimal semicontinuous approximations to func-
tions. If F : X ⇒ Y , then lim infOF is lower-semicontinuous with open values, and
lim infOF(x) ⊂ F(x) for all x . If G: X ⇒ Y is lower-semicontinuous with open values,
and G(x) ⊂ F(x) for all x , then lim infOG ⊂ lim infOF , so G ⊂ lim infOF . Hence
lim infOF is the optimal lower-semicontinuous open-valued under-approximation to
F . Similarly, if G: X ⇒ Y is upper-semicontinuous with closed values, and F ⊂ G,
then lim supAF ⊂ G, so lim supAF is the optimal upper-semicontinuous closed-valued
over-approximation to F .

We remark that if F is lower-semicontinuous and β is a base for X , then F is
completely determined by the values of

⋂{F(x) | x ∈ J } for J ∈ β. Similarly, if F is
upper-semicontinuous, then F is completely determined by the values of

⋃{F(x) | x ∈
J } for J ∈ β.

2.4. Approximations of Multivalued Maps

Let (X, τ) be a second-countable locally compact Hausdorff space. We are interested in
the function spaces LSCA(X ⇒ X) and USCK(X ⇒ X), and approximations in these
spaces.

Choose a base β1 for (X, τ) such that for all I, J ∈ β1, then I ∩ J ∈ β1, and that if
I0, I1 ∈ β1 and Ī1 ⊂ Ī0, then either I1 = I0, or there exists I2 ∈ β1 such that I1 ∩ I2 = ∅
and Ī0 = Ī1 ∪ Ī2.

Choose a base β2 for (X, τ) such that for all I, J ∈ β2, I ∪ J ∈ β2, and for all
I ∈ β1, J ∈ β2, we have I ∩ J = ∅ ⇐⇒ Ī ∩ J̄ = ∅.

A base for the topology τMA< on LSCA is given by sets of the form{{F ∈ LSCA | Īi ⊂ F−1(Ji)} | Ii ∈ β1, Ji ∈ β2
}
. (6)

A base for the topology τMK> on USCK is given by sets of the form{{F ∈ USCK | Īi ⊂ F⇐(Ji)} | Ii ∈ β1, Ji ∈ β2
}
. (7)

Given Ii ∈ β1, Ji ∈ β2, i = 1, . . . ,m such that the Ii are disjoint, choose Ĩi ∈ O(X)
and Ĵi ∈ A such that Īi ⊂ Ĩi and Ĵi ⊂ Ji . We can further choose the Ĩi and Ĵi such that
if Īi ∩ Jj �= ∅, then there exists x ∈ Ĩi ∩ Ĵj such that x �∈ Ĩk for k �= i .

Additionally, let Ĩ0 = X , and take some compact set Ĵ0 such that
⋃m

i=1 Ji ⊂ Ĵ0 Then
the function defined by F(x) :=⋃{ Ĵi | x ∈ Ĩi , i = 1, . . . ,m} is lower-semicontinuous,
and Īi ⊂ F−1(Ji) for all i . Then the function defined by F(x) := ⋂{ Ĵi | x ∈ Ĩi , i =
0, . . . ,m} is upper-semicontinuous, and Īi ⊂ F⇐(Ji) for all i .

Lemma 2.5.

1. Take F ∈ LSCA as above. Then F−1(Ĩi) =
⋃{ Ĩk | Īi ∩ Jj �= ∅}.

2. Take F ∈ USCK as above. Then F(Ĵj) =
⋃{ Ĵi | Īi ∩ Jj �= ∅}.

3. Take F ∈ USCA as above, let I ⊂ {0, . . . ,m}, and let U = ⋃{ Īi | i ∈ I} and
Ũ =⋃{ Ĩi | i ∈ I}. Then F⇐(Ũ) =⋃{ Ĩj | Jj ⊂ U }.

Proof. 1. By construction, F−1(Ĩi) =
⋃{ Ĩj | Ĩi ∩ Ĵj �= ∅} =

⋃{ Ĩk | Īi ∩ Jj �= ∅}.

Optimal Semicomputable Approximations to Reachable and Invariant Sets

2. If Īi ∩ Jj �= ∅, then there exists x ∈ Ĩi ∩ Ĵj such that x �∈ Ĩk for k �= i . Then
F(x) = Ĵi , and F(x ′) ⊂ Ĵi for all x ′ ∈ Ĩi .

3. By construction, F⇐(Ũ) =⋃{ Ĩj | Ĵj ⊂ Ũ } =⋃{ Ĩj | Jj ⊂ U }.

3. Computable Analysis and Topology

Computable analysis deals with real numbers, continuous functions on real and Euclidean
spaces and subsets of Euclidean spaces. We assume familiarity with the definitions of
notation and representations given in [23]. All the results of [23] carry over from the
Euclidean case in a straightforward way, so we do not present proofs for the more general
case here.

We take � to be a finite alphabet, and assume we have a tupling operation 〈 · 〉 on
�∗. We write w < p if p = 〈w1, w2, . . .〉 and w = wi for some i .

We say a function η:�ω × · · · × �ω → �ω is computable if there exists a Turing
machineMwhich, on input (p1, . . . , pk), computes forever, writing the infinite sequence
p0 = η(p1, . . . , pk) to its output tape.

A computable topological space is a tuple (M, τ, σ, ν) such that X is a set, τ is a
topology on X , σ is a countable sub-base for τ , and ν:⊂ �∗ → σ is a partial surjective
function giving a notation for σ . The standard representation of (M, τ, σ, ν) is the partial
surjective function δ:⊂ �ω → X such that

δ(p) = x :⇐⇒ {ν(w) | w < p} = {J ∈ σ | x ∈ J }. (8)

If δ0, . . . , δk are representations δi :⊂ �ω → Xi , then we say that f : X1 × · · · ×
Xk → X0 is (δ1, . . . , δk; δ0)-computable if there exists a computable function η:⊂ �ω×
· · · × �ω such that f (δ1(y1), . . . , δk(yk)) = δ0(η(y1, . . . , yk)) whenever yi ∈ dom(δi)

for all i = 1, . . . , k.
The fundamental theorem of computable topology is that any computable function

is continuous.

Theorem 3.1. For i = 0, . . . , k let Si = (Mi , τi , σi , νi) be a computable topologi-
cal space, and let δi be the standard representation of Si . Then every (δ1, . . . , δk; δ0)-
computable function f : M1 × · · · × Mk → M0 is (τ1, . . . , τn; τ0)-continuous.

3.1. Representations of Sets and Maps

We now define representations of open, closed and compact sets, and of semicontinuous
maps with closed and compact values. There are representations θ< ofO, ψ< and ψ> of
A, and κ> of K defined as follows:

θ<(p) = U :⇐⇒ {ν(w):w < p} = {J ∈ β: J̄ ⊂ U },
ψ<(p) = A :⇐⇒ {ν(w):w < p} = {J ∈ β: A ∩ J �= ∅},
ψ>(p) = A :⇐⇒ {ν(w):w < p} = {J ∈ β: A ∩ J̄ = ∅},
κ>(p) = C :⇐⇒ {(ν(w1), . . . , ν(wk)): 〈w1, . . . , wk〉< p}

= {(J1, . . . , Jk) ⊂ β: C ⊂⋃k
i=1 Ji }.

(9)

P. Collins

There are representations µθ< of LSCO< , µψ< of LSCA< , µψ> of USCA> and µκ> of USCK>
defined by

µO< (p)=F ∈ LSCO :⇐⇒ {(νX (v), νY (w)): 〈v,w〉< p}
= {(I, J)∈βX × βY :∀x ∈ Ī , y∈ J̄ , F(x)� y},

µA< (p)=F ∈LSCA :⇐⇒ {(νX (v), νY (w)): 〈v,w〉< p}
= {(I, J)∈βX × βY : Ī ⊂ F−1(J)},

µA> (p)=F ∈USCA :⇐⇒ {(νX (v), νY (w)): 〈v,w〉< p}
= {(I, J)∈βX × βY : Ī ∩ F−1(J̄) = ∅}

µK>(p)=F ∈USCK :⇐⇒ {(νX (v), νY (w1), . . . , νY (wk)): 〈v,w1, . . . , wk〉< p}
=

{
(I, J1, . . . , Jk): Ī ⊂ F⇐

(
k⋃

i=1

Ji

)}
.

(10)

The representations θ<,ψ<,ψ> and κ> are equivalent to the standard representations for
the topologies τO< , τA< , τA> and τK> , respectively. The representations µθ<, µψ<, µψ> and
µκ> are equivalent to the standard representations for the topologies τMO< , τMA< , τMA>

and τMK> , respectively.

3.2. Computable Operations on Sets and Maps

To prove computability of system-theoretic operators, we use the computability of impor-
tant primitive operators on sets and multivalued maps. We first show that most important
set-theoretic operators are computable.

Theorem 3.2.

1. Closure U �→ cl(U) is (θ<;ψ<)-computable.
2. Union (U, V) �→ U ∪ V is (θ<, θ<; θ<)-computable, (A, B) �→ A ∩ B is
(ψ<,ψ<;ψ<)-computable and (ψ>,ψ>;ψ>)-computable, and (C, D) �→ C ∪
D is (κ>, κ>; κ>)-computable.

3. Intersection (A, B) �→ A∩B is (ψ>,ψ>;ψ>)-computable, and (A,C) �→ A∩C
is (ψ>, κ>; κ>)-computable.

4. Closed intersection (A,U) �→ cl(A ∩U) is (ψ<, θ<;ψ<)-computable.
5. Set difference (U, A) �→ U\A is (θ<, ψ>; θ<)-computable, and (A,U) �→ A\U

is (ψ>, θ<;ψ>)-computable.

Note that intersection (A, B) �→ A ∩ B is not (ψ<,ψ<;ψ<)-computable.
We next show that certain limits of sets are computable. Each of these limiting

operations is closely connected with convergence in the respective topology. We topol-
ogise the infinite product space M1 × M2 × · · · using the product topology, and take
as representation δ〈p1, p2, . . .〉 = δ1(p1), δ2(p2), . . ., where 〈p1, p2, . . .〉 is the tupling
operation of countably many infinite sequences defined using the Gödel ordering.

Theorem 3.3.

1. Let (U1,U2, . . .) be a sequence of open sets such that Ui ⊂ Uj whenever i < j .
Then limi→∞ Ui exists in τO and the operator (U1,U2, . . .) �→ limi→∞ Ui is
(θ<, θ<, . . . ; θ<)-computable.

Optimal Semicomputable Approximations to Reachable and Invariant Sets

2. Let (A1, A2, . . .) be a sequence of closed sets such that Ai ⊂ N2−i (Aj) whenever
i < j . Then limi→∞ Ai exists in τA and the operator (A1, A2, . . .) �→ limi→∞ Ai

is (ψ<,ψ<, . . . ;ψ<)-computable.
3. Let (A1, A2, . . .) be a sequence of closed sets such that Aj ⊂ Ai whenever i < j .

Then limi→∞ Ai exists in τA and the operator (A1, A2, . . .) �→ limi→∞ Ai is
(ψ>,ψ>, . . . ;ψ>)-computable.

4. Let (C1,C2, . . .) be a sequence of compact sets such that Cj ⊂ Ci whenever
i < j . Then limi→∞ Ci exists in τK and the operator (C1,C2, . . .) �→ limi→∞ Ci

is (κ<, κ<, . . . ; κ<)-computable.

We now consider images and preimages of sets under semicontinuous maps. The
following theorem is proved in [6], and we provide a sketch of the proof of Theorem 3.5.
Certain strong preimages are also computable, but we do not need these here.

Theorem 3.4. Let X and Y be computable Hausdorff spaces, let F : X ⇒ Y be a
multivalued function, let U ⊂ X be an open set, let A ⊂ X be a closed set and let
C ⊂ X be a compact set.

1. The operator (F,U �→F(U) is (µO< , θ<; θ<)-computable for F ∈LSCO(X⇒Y).
2. The operator (F, A) �→ cl(F(A)) is (µA< ,ψ<;ψ<)-computable for

F ∈LSCA(X ⇒ Y).
3. The operator (F,C)�→F(C) is (µA> , κ>;ψ>)-computable for F∈USCA(X⇒Y).
4. The operator (F,C)�→F(C) is (µK>, κ>; κ>)-computable for F∈USCK(X⇒Y).

Note that the operator (F, A) �→ cl(F(A)) is not (µK, ψ;ψ>)-computable for
F ∈ USCK, since it is not (τMK, τA; τA>)-continuous.

Theorem 3.5. Let X and Y be computable Hausdorff spaces, let F : X ⇒ Y be a
multivalued function and let U be an open set.

1. The operator (F,U) �→F−1(U) is (µA< , θ<; θ<)-computable F ∈LSCA(X⇒Y).
2. The operator (F, A) �→F−1(A) is (µK>,ψ>;ψ>)-computable F∈USCK(X⇒Y).
3. The operator (F,C) �→F−1(C) is (µA> , κ>;ψ>)-computable F∈USCA(X⇒Y).

Proof. 1. L̄ ⊂ F−1(U) if, and only if, there exist Ī1, . . . , Īm , J1, . . . , Jm , K1, . . . , Kn

such that L̄ i ⊂
⋃m

i=1 Ii , Īi ⊂ F−1(Ji) for i = 1, . . . ,m, and J̄i ⊂
⋃n

j=1 Kj for
i = 1, . . . ,m.

2. Ī ∩ F−1(A) = ∅ if, and only if, there exist J1, . . . , Jk such that F(Ī) ⊂⋃k
i=1 Ji

and J̄i ∩ A = ∅ for all i = 1, . . . , k.
3. Ī ∩ F−1(C) = ∅ if, and only if, there exist J1, . . . , Jk such that C ⊂⋃k

i=1 Ji and
F(Ī) ∩ J̄ = ∅ for all i = 1, . . . , k.

4. Reachability and Invariance Problems

We now apply the material developed in Section 2.2 to the study of the reachability
problem for semicontinuous systems. We first define the reachable, closed-reachable

P. Collins

and chain-reachable sets, and give an alternative formulation of the chain reachable set.
We then prove some straightforward results on computability of countable unions and
intersections, and use these to prove the main results on reachability. Finally, we discuss
closure-interior systems, which have inner as well as outer approximations, and show
that the computability results extend to these systems as well.

Viable and invariant sets are also important system properties. Recall that a set A
is viable for a system F if, for every point x of A, there is an orbit through x remaining
in A, and invariant if every orbit starting in A remains in A. A viable set may also be
described as control-invariant, and an invariant set as perturbation invariant. See [3] for
a detailed exposition of viability theory.

4.1. Computability of Reachable Sets

Definition 4.1 (Reachability). Let F : X ⇒ X be a multivalued map, and X0 ⊂ X .
Then the reachable set of F from X0 is

Reach(F, X0)

:= {x ∈ X | ∃ x0, . . . , xn s.t. x0 ∈ X0, xn = x, and ∀ i, xi+1 ∈ F(xi)}

=
∞⋃

n=0

Fn(X0). (11)

If F has open values and X0 is open, then Reach(F, X0) is open. However, even if
F is continuous with compact values, and X0 is compact, the reachable set need not be
closed, so we take its closure, and define the closed reachable set as

clReach(F, X0) := cl(Reach(F, X0)). (12)

The following theorem [6] shows that the closed reachable set is lower-semi-
computable:

Theorem 4.2.

1. (F,U) �→ Reach(F,U) is (µθ<, θ<; θ<)-computable.
2. (F, A) �→ clReach(F, A) is (µψ<,ψ<;ψ<)-computable.

Unfortunately, (F,C) �→ clReach(F,C) is not (τMK, τK; τA>)-continuous, so is
not (µκ, κ;ψ>)-computable. To find an upper-semicontinuous over-approximation to
the reachable set, we introduce the concept of ε-chains as considered by Conley [8].

Definition 4.3. F : X ⇒ X and ε > 0. A sequence x0, . . . , xn is an ε-chain for F if
there exist points y1, . . . , yn ∈ X such that yi+1 ∈ F(xi) and d(xi+1, yi+1) < ε for
i = 0, . . . , n − 1. The chain reachable set of F from X0 is defined

ChainReach(F, X0)

:= {x ∈ X | ∀ε > 0, ∃ ε-chain x0, . . . xn with x0 ∈ X0 and xn = x}. (13)

Optimal Semicomputable Approximations to Reachable and Invariant Sets

Clearly, Reach(F,C) ⊂ ChainReach(F,C). For our purposes, however, it is more
convenient to use the following metric-free characterisation:

Theorem 4.4. Let F ∈ USCK and C a compact set. Suppose ChainReach(F,C) is
compact. Then

ChainReach(F,C) =⋂{U ∈ O(X) | C ⊂ U and cl(U) ⊂ F⇐(U)}. (14)

The following result [6] shows that the chair-reachable set is upper-semicomputable.

Theorem 4.5. If ChainReach(F,C) is compact, then ChainReach(F,C) is
(µκ>, κ>; κ>)-computable.

If ChainReach(F,C) is not compact, then ChainReach need not be (τMK, τK; τA>)-
continuous at (F,C), as is the case in Example 4.7 of [6]. The difficulty is that it is
impossible to have considered the entire chain-reachable set at any finite stage in the
computation, and hence it is impossible to prove that any point is unreachable.

By Theorem 3.1, any (µκ>, κ>; κ>)-computable function is (τMK> , τK> ; τK>)-
continuous. It therefore remains to show that ChainReach is the best-possible upper-
semicontinuous over-approximation to Reach(F,C).

Theorem 4.6. Suppose ChainReach(F,C) is compact. Then ChainReach(F,C) =
[lim supA Reach](F,C)

Proof. Let NF be a basic open neighbourhood of F defined by F̃(Īi) ⊂ Ji for i =
1, . . . ,m − 1 for all F̃ ∈ NF . Let NC be a basic open neighbourhood of C defined by
C̃ ⊂ J0 for all C̃ ∈ NC , and take Ī0 = ∅. Take Īm so that {I1, . . . , Im} is a topological
partition of X , and Jm such that Īi ∪ J̄i ⊂ Jm for i = 0, . . . ,m − 1.

Define setsIk as follows: LetI0 = {0}, and defineIk recursively byIk = Ik−1∪{i ∈
0, . . . ,m | ∃ j ∈ Ik−1, Īi ∩ Jj∩ �= ∅}. Since the Ik are an increasing sequence of subsets
of {0, 1, . . . ,m}, the sets eventually limit on some setI∞, with the property that∀ j ∈ I∞,
Jj ⊂

⋃{ Īi | i ∈ I}.
Suppose m �∈ I∞, and define V = ⋃{Jj | j ∈ I}. Then C ∈ V , and cl(V) ⊂⋃{ Īi | Īi ∩ V �= ∅} ⊂⋃{ Īi | i ∈ I} ⊂ F⇐(V). Therefore ChainReach(F,C) ⊂ V .
Now construct upper-semicontinuous F̂ as in Section 2.4, and take Ĉ = Ĵ0. Then

F̂ ∈ NF and Ĉ ∈ NC . Further, it is easy to see that Reach(F̂, Ĉ) = ⋃{ Ĵi | i ∈ I∞}.
Hence V =⋃{Reach(F̂, Ĉ) | F̂ ∈ NF , Ĉ ∈ NC}.

We therefore have ChainReach(F,C) ⊂ V , and V = ⋃{Reach(F̂, Ĉ) | F̂ ∈
NF , Ĉ ∈ NC}. Hence ChainReach(F,C) ⊂ lim supA Reach (F,C).

4.2. Computation of Viability Kernels

We first consider the computation of the maximal viable subset of a given set.

P. Collins

Definition 4.7. The viability kernel of B under F is

Viab(F, B) := {x | ∃ x0, x1, . . . s.t. x = x0, and ∀i, xi+1 ∈ F(xi) and xi ∈ B}

=
∞⋂

n=0

F−n(B). (15)

It was shown by Saint-Pierre [20] that if C is compact, the viability kernel varies
upper-semicontinuously in (F,C), and an algorithm to compute it was given. The via-
bility kernel is also upper-semicomputable in the framework of computable analysis.

Theorem 4.8.

1. (F, A) �→ Viab(F, A) is (µκ>,ψ>;ψ>)-computable.
2. (F,C) �→ Viab(F,C) is (µψ>, κ>; κ>)-computable.

Proof. 1. Since (F, A) �→ F−1(A) is (µκ>,ψ>;ψ>), we can compute a ψ>-name of
F−1(A) from aψ>-name of A, and hence recursively compute aψ>-name of F−n(A) for
all n ∈ Z+. The result follows since the sequence

⋂n
i=1 F−i (A) is a decreasing sequence

of ψ>-computable closed sets, so the limit
⋂∞

i=1 F−i (A) is also ψ>-computable.
2. Let C0 = C , and define Cn+1 = Cn∩F−1(Cn). Then we can compute aκ>-name of

Cn for all n, since (F,C) �→ F−1(C) is (µψ>, κ>;ψ>)-computable, and (C, A) �→ C∩A
is (κ>,ψ>; κ>)-computable. Then result follows since the Cn is a decreasing sequence
of κ>-computable compact sets, and Viab(F,C) = limn→∞ Cn .

Unfortunately, it is not possible to compute a good lower-approximation to
Viab(F,C) for a compact set C . The operator (F,C) �→ Viab(F,C) is not
(τMK, τK; τA<)-continuous, so is not (µκ, κ;ψ<)-computable, as the following example
shows.

Example 4.9. Let F(x) = 2x and C = [0, 1]. We can take approximations Cn to C
by finite sets of rational points, and (lower or upper) semicontinuous approximations Fn

to F mapping rational points to irrational points. Then Fn(Cn) ∩ Cn = ∅ for all n, so
Viab(Fn,Cn) = ∅. Hence we have lim inf(F ′,C ′)→(F,C) Viab(F,C) = ∅.

This example can be used to prove the following result.

Theorem 4.10. For all F ∈ CK(X ⇒ X), C ∈ K(X), [lim infAViab](F,C) = ∅,
taking topology τMK on CK(X ⇒ X) and τK on K(X).

Proof. Let � be a dense subset of X , and approximate C by finite subsets Cn of �.
We can then always approximate F in (CK(X ⇒ X), τMK) by a sequence Fn such that
Fn(x) ∩ Cn = ∅ for all x ∈ Cn . Hence lim infAViab = ∅.

The following example shows that the viability kernel may depend continuously on
the system.

Optimal Semicomputable Approximations to Reachable and Invariant Sets

Example 4.11. Consider F ∈ C(R ⇒ R) given by F(x) = {2x}, and C = [−1, 1].
Then, clearly, Viab(F,C) = {0}. Further, Viab(F,C) �= ∅ for any continuous perturba-
tion of F in C(R⇒ R).

Recall that a set A is viable if A ⊂ F−1(A). We say that A is robustly viable if
cl(A) ⊂ F−1(int(A)).

Definition 4.12. The robust viability kernel of B is

RobustViab(F, B) :=
⋃
{C ∈ K | C ⊂ int(B) ∩ F−1(int(C))}. (16)

If F is lower-semicontinuous, then F−1(V) is open whenever V is open, and it is easy
to see that the robust viability kernel is open. Using Theorem 3.5, we can show it is also
computable.

Theorem 4.13. The operator (F,U) �→ RobustViab(F,U) is (µψ<, θ<; θ<)-comput-
able.

The following result shows that the robust viability kernel is the optimal lower-
semicomputable under-approximation to the viability kernel.

Theorem 4.14. lim infO Viab = RobustViab on LSCA ×O<.

Proof. Let NF be a basic open set in τMA< given by NF = {F̃ ∈ LSCA | Īi ⊂
F̃−1(Ji) for i = 1, . . . ,m}. Let NU be a basic open set in τO< given by NU = {Ũ ∈ O |
Īi ⊂ Ũ ∀i ∈ I0} . Take J0 = X .

We now attempt to compute a set C such that C is viable for all F̃ ∈ NF , Ũ ∈ NU .
Define Ik recursively by Ik := { j ∈ Ik−1 | Īi ∩ Jj �= ∅ for some i ∈ Ik−1}. The sets
Ik are decreasing finite sets, so eventually stabilise to a set I∞, with the property that if
Jj ∩ Īi �= ∅ for some i ∈ I∞, then j ∈ I∞.

Let C = ⋃{ Īi | i ∈ I∞}, V = ⋃{Ji | i ∈ I∞, and let F ∈ NF . Then Īi ⊂ Ji ,
so C ⊂ F−1(V). Further, if j ∈ I∞ and Īi ∩ Jj �= ∅, then i ∈ I∞, so V ⊂ C . Hence
C ⊂ F−1(int(C)), and by construction, C ⊂⋃{ Īi | i ∈ I0}, so C ⊂ U for all U ∈ NU .
Therefore C ⊂ RobustViab(F,U) for all F ∈ NF and U ∈ NU .

By the construction in Section 2.4, we can construct lower-semicontinuous F̃ such
that Ũk ∩ F−1(Ũk) = Ũk+1, where Ũk =

⋃{ Ĩi | i ∈ Ik}. Then Viab(F̃, Ũ0) = Ũ∞, and
for the sets Ĩi sufficiently close to Īi , we have

⋂{Viab(F̃, Ũ) | F̃ ∈ NF , Ũ ∈ NU } = C .
We therefore have C ⊂ RobustViab(F,U) and C =⋂{Viab(F̃, Ũ) | F̃ ∈ NF , Ũ ∈

NU }. Hence lim infO Viab (F,U)⊂RobustViab(F,U), but since RobustViab is lower-
semicontinuous and RobustViab(F,U) ⊂ Viab(F,U) for all U , we must have equality
lim infO Viab (F,U) = RobustViab(F,U).

4.3. Computation of Invariance Kernels

We now consider computability of the maximal invariant subset of a given set.

P. Collins

Definition 4.15. The invariance kernel of B under F is

Inv(F, B) := {x | ∀x0, x1, . . . s.t. x0 = x and xi+1 ∈ F(xi), xi ∈ B ∀i}

= X\
∞⋃

n=0

F−n(X\B). (17)

We obtain the following result on computability of the invariance kernel:

Theorem 4.16.

1. (F, A) �→ Inv(F, A) is (µψ<,ψ>;ψ>)-computable.
2. (F,C) �→ Inv(F,C) is (µψ<, κ>; κ>)-computable.

Proof. 1. Let U = X\A, which is θ<-computable. By Theorem 3.5, F−n(U) is θ<-
computable for all n. By Theorems 3.2 and 3.3,

⋃∞
n=0 F−n(U) is θ<-computable. Hence

Inv(F, A) = X\⋃∞
n=0 F−n(X\A) is ψ>-computable.

2. By (2), Inv(F,C) is ψ>-computable. Since Inv(F,C) = Inv(F,C) ∩ C , we
immediately see that Inv(F,C) is κ>-computable by Theorem 3.2.

Notice that we can compute an upper approximation to Inv(F,C) using a lower
approximation to F .

Unfortunately, (F,C) �→ Inv(F,C) is not (τMK, τA; τA<)-continuous, so is not
(µκ, κ;ψ<)-computable. Indeed, just as in the case of the viability kernel,
lim inf(F ′,C ′)→(F,C) Inv(F ′,C ′) = ∅ for all (F,C). To obtain lower approximations to
the invariance kernel, we consider robust invariance. Recall that a set A is invariant
if F(A) ⊂ A, or equivalently, A ⊂ F⇐(A). We say that A is robustly invariant if
cl(A) ⊂ F⇐(int(A)).

Definition 4.17. The robust invariance kernel of B is

RobustInv(F, B) :=
⋃
{C ∈ K | C ⊂ int(B) ∩ F⇐(int(C))}.

If F is upper-semicontinuous, then F⇐(V) is open whenever V is open, and it is
easy to see that the robust invariance kernel is open. We have the following computability
result:

Theorem 4.18. The operator (F,U) �→RobustInv(F,U) is (µκ>, θ<; θ<)-computable.

The following result shows that the robust invariance kernel is the optimal lower-
semicomputable under-approximation to the invariance kernel.

Theorem 4.19. lim infO Inv = RobustInv on USCK ×O<.

Proof. Let NF and NU be basic open neighbourhoods defined by F(Īi) ⊂ Ji for
i = 1, . . . , n and

⋃{ Īi | i ∈ I0} ⊂ U . Take Īm so that Ī1, . . . , Īm is a topological
partition of X , and Jm so that Īi , J̄i ⊂ Jm for i = 1, . . . ,m − 1.

Optimal Semicomputable Approximations to Reachable and Invariant Sets

Define sets Ik and Wk by Ik = {i ∈ Ik−1 | Ji �⊂ Wk−1} and Wk =
⋃{ Īi | i ∈ Ik}.

Let I∞ be the limit of the Ik , W = W∞, and V = ⋃{Ji | i ∈ I∞}. Then if j ∈ ∞,
Jj ∈

⋃{ Īi | i ∈ I∞}.
Then by construction, if F ∈ NF , we have Īi ⊂ F⇐(Ji) for all i , so W ⊂ F⇐(V).

Further, since Jj ⊂ W for all j ∈ I∞, we have V ⊂ W , so W ⊂ F⇐(int(W)). If
U ∈ NF , then W ⊂ W0 ⊂ U , so W ⊂ RobustInv(F,U).

By the construction in Section 2.4, we can construct upper-semicontinuous F̂ such
that Ũk ∩ F̂⇐(Ũk) = Ũk+1, where Ũk =

⋃{ Ĩi | i ∈ Ik}. Then Inv(F̂, Ũ0) = Ũ∞, and
the sets Ĩi sufficiently close to Īi , we have

⋂{Viab(F̂, Ũ) | F̂ ∈ NF , Ũ ∈ NU } = W .
We therefore have W ⊂ RobustInv(F,U) and W =⋂{Inv(F̂, Ũ) | F̂ ∈ NF , Ũ ∈

NU }. Hence lim infO Inv (F,U) ⊂ RobustInv(F,U), but since RobustInv is lower-
semicontinuous and RobustInv(F,U) ⊂ Inv(F,U) for all U , we must have equality
lim infO Inv (F,U) = RobustInv(F,U).

5. Conclusions and Further Research

In this paper we have considered the computation of reachable, viable and invari-
ant sets in the setting of computable analysis and topology. We have seen that the
reachable set is lower-semicomputable, whereas viability and invariance kernels are
upper-semicomputable. We have shown that the chain-reachable set is the best upper-
semicomputable approximation to the reachable set, and that the robust viability and
invariance kernels are the best lower-semicomputable approximations to the viable and
invariance kernels. We have also seen that nontrivial semicomputable under-approxima-
tions to the viable and invariance kernels can only be computed for open sets, and not
for closed sets with the lower topology The results in this paper complete the study of
basic dynamical properties of multivalued maps begun in [6] and [7] by showing that
the results obtained are optimal.

The methods used are to construct approximations to the sets of interest valid in
some neighbourhood of the parameters. We show that the chain-reachable set is the
limit-supremum of the reachable set, and the robust viability and invariance kernels are
the limit-infimum of the viability and invariance kernels. We then use general properties
of lim sup and lim inf to prove that the approximations obtained are optimal.

The methods used provide a general foundation to consider optimal computable
approximations in other settings. Whenever a function is not continuous, we attempt to
find a lower-semicontinuous under-approximation, and an upper-semicontinuous over-
approximation. If these functional are computable, they provide the optimal computable
approximation to the function of interest. Important uncomputable problems occur in
fixed-point theory and nonlinear dynamics, such as the computation of invariant sets and
topological entropy, and the computation of optimal controllers.

References

[1] Eugene Asarin and Ahmed Bouajjani. Perturbed Turing machines and hybrid systems. In Proceedings
of the Sixteenth Annual IEEE Symposium on Logic in Computer Science, pages 269–278, 2001.

[2] Eugene Asarin, Theo Dang, and Oded Maler. d/dt : a verification tool for hybrid systems. In CDC,
pages 365–370, 2001.

P. Collins

[3] Jean-Pierre Aubin. Viability Theory. Systems & Control: Foundations & Applications. Birkhäuser,
Boston, MA, 1991.

[4] Jean-Pierre Aubin and Hélène Frankowska. Set-Valued Analysis. Systems & Control: Foundations &
Applications. Birkhäuser, Boston, MA, 1990.

[5] Pierre Cardaliaguet, Marc Quincampoix, and Patrick Saint-Pierre. Set-valued numerical analysis for
optimal control and differential games. In Stochastic and Differential Games, pages 177–247. Number 4
in Annals of the International Society of Dynamamic Games. Birkhäuser, Boston, MA, 1999.

[6] Pieter Collins. Continuity and computability of reachable sets. Theoret. Comput. Sci., 341:162–195,
2005.

[7] Pieter Collins. On the computability of reachable and invariant sets. In Proceedings of the 44th IEEE
Conference on Decision and Control, pages 4187–4192, 2005.

[8] Charles Conley. Isolated Invariant Sets and the Morse Index. Volume 38 of CBMS Regional Conference
Series in Mathematics. American Mathematical Society, Providence, RI, 1978.

[9] Michael Dellnitz, Gary Froyland, and Oliver Junge. The algorithms behind GAIO-set oriented numerical
methods for dynamical systems. In Bernold Fiedler, editor, Ergodic Theory, Analysis, and Efficient
Simulation of Dynamical Systems, pages 145–174, 805–807. Springer, Berlin, 2001.

[10] Martin Fränzle. Analysis of hybrid systems: an ounce of realism can save an infinity of states. In J. Flum
and M. Rodriguez-Artalejo, editors, Computer Science Logic, pages 126–140. Number 1683 in LNCS.
Springer-Verlag, Berlin, 1999.

[11] Martin Fränzle. What will be eventually true of polynomial hybrid automata. In N. Kobayashi and B. C.
Pierce, editors, Theoretical Aspects of Computer Software, pages 340–359. Number 2215 in LNCS.
Springer-Verlag, Berlin, 2001.

[12] Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In Manfred Morari and
Lothar Thiele, editors, HSCC, pages 258–273. Number 3414 of LNCS. Springer, Berlin, 2005.

[13] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: a model checker for hybrid
systems. Softw. Tools Technol. Transfer, 1:110–122, 1997.

[14] Thomas A. Henzinger, Benjamin Horowitz, Rupak Majumdar, and Howard Wong-Toi. Beyond hytech:
hybrid systems analysis using interval numerical methods. In N. Lynch and B. Krogh, editors, HSCC,
pages 130–144. Number 1790 in LNCS. Springer-Verlag, Berlin, 2000.

[15] Oliver Junge and Hinke Osinga. A set oriented approach to global optimal control. ESAIM Control
Optim. Calc. Var., 10(2):259–279, 2004.

[16] Erwin Klein and Anthony C. Thompson. Theory of Correspondences. Including Applications to Mathe-
matical Economics. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley,
New York, 1984.

[17] Alexander B. Kurzhanski and Pravin Varaiya. On ellipsoidal techniques for reachability analysis. I.
External approximations. Optim. Methods Softw., 17(2):177–206, 2002.

[18] Alexander B. Kurzhanski and Pravin Varaiya. On ellipsoidal techniques for reachability analysis. II.
Internal approximations box-valued constraints. Optim. Methods Softw., 17(2):207–237, 2002.

[19] James R. Munkres. Topology: A First Course. Prentice-Hall, Englewood Cliffs, NJ, 1975.
[20] Patrick Saint-Pierre. Approximation of the viability kernel. Appl. Math. Optim., 29(2):187–209, 1994.
[21] B. Izaias Silva, Keith Richeson, Bruce Krogh, and Alongkrit Chutinan. Modeling and verification of

hybrid dynamical system using CheckMate. In Proceedings of ADMP, pages 189–194, 2000.
[22] Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete Contin.

Dyn. Syst. Ser. B, 3(3):361–382, 2003.
[23] Klaus Weihrauch. Computable Analysis—An Introduction. Texts in Theoretical Computer Science.

Springer-Verlag, Berlin, 2000.

Received September 15, 2005, and in revised form December 9, 2005, and in final form March 21, 2006.

